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U N D E R  AN I N T E R F A C E  B E T W E E N  T W O  HEAVY F L U I D S  

D. N. Gorelov and S. I. Gorlov UDC 532.59 

The problem of a hydrofoil moving under the interface between two media has found wide practical 
applications and is a subject of interest to many researchers. A systematic description of the results obtained 
is given in [1]. Most papers consider a linear problem of hydrofoil motion under a free surface. The basic results 
were obtained by M. V. Keldysh, M. A. Lavrent'ev [2], and N. E. Kotchin [3]. They derived exact solutions 
of the problem of vortex motion under the free surface of a heavy liquid that allowed the boundary-value 
problem of hydrofoil motion to be reduced to integral equations. Later studies were mainly devoted to the 
methods of solving the corresponding integral equations. 

Much less is known about the general case where the second medium is not the vacuum. The results 
obtained are reviewed by Sturova [4]. 

We consider the problem of hydrofoil motion under the interface between two media in a more general 
statement. The linear boundary-value problem is reduced to two integral equations. Their kernels are the 
exact solution of the vortex problem. We developed an effective algorithm for solving these two equations 
which is applicable to hydrofoils of any thickness, including an arbitrary small one. For the Joukowski profile, 
the calculation results are given for lift, wave resistance, the moment and shape of the interface between 
media, depending on the problem parameters. 

1. Let us consider a linear boundary-value problem, which describes the motion of hydrofoil L under 
the interface between two liquid media D1 and D2. We introduce a hydrofoil-related coordinate system Oxy 
by orienting the Ox axis along the unperturbed interface (Fig. 1). We assume that the liquid in layers DI 
and D2 is ideal, incompressible, heavy, and homogeneous, and the motion of liquid beyond the interface and 
the contour L is stationary and potential. The notation is as follows: g is the acceleration of gravity; H is the 
distance between the hydrofoil leading edge and the unperturbed-medium interface; b is the hydrofoil chord; 
a is the angle of attack; pk is the liquid density in the kth layer; and Vkoo is the liquid velocity at infinity in 
front of the hydrofoil in the Dk layer (k = 1 and 2). 

The liquid motion in each Dk layer is described by the complex velocity Vk(z ) ,  z = x + iy. We 
require that the functions V k ( z )  be analytical in Dk (beyond L for k = 1) and satisfy the following boundary 
conditions: the continuity of both pressure and the normal velocity component upon passage through the 
interface between two media, the decay of velocity perturbations at infinity in front of the hydrofoil in the D1 
and D2 regions, the absence of liquid flow through contour L, and the Joukowski postulate on the trailing 
edge. 

The functions below satisfy the above conditions, except for the last two: 

__ i f  V k ( z )  = Vkoo + ~ i  K k ( z , ( ) 7 ( s ) e - i ~  k = 1, 2. (1.1) 
L 

Here s is the arc coordinate of point ~" E L; 7(s) is the intensity of the vortex layer simulating L; O(s) is the 
angle between the tangent to L at the point ((s) and the Ox axis; 
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where 

1 I m12 I vlm]2 7e  -iA(z-r 
Ki(z,~) - 2~ri z - -  ~ + ~ z - ~ + ~r- j -~Z~I dA- v, ml2ie-iV'(=-r 

o 
(1.2) 

K 2 ( z , ~ ) = V l  oo ( 7r i z - ~ ~r J ~ --  -~1 d A - 
o 

p, v , L  g(p, - p2) . p2v oo 

Expressions (1.2) and (1.3) for Kk(z,~) (]c = I and 2) are exact solutions of the corresponding 
boundary-value problem of a vortex of unit intensity [5] which proved to be more convenient than the solution 
of N. E. Ko tch in  [3]. 

T h e  condi t ion  for a s m o o t h  s t eady  flow abou t  the  con tour  L can be wr i t t en  as 

Im{Vo(z)e i~ = O, z E L; (1.4) 

- 1 7 ( s )  = Re{V0(z)e i~  z E L, (1.5) 

where Vo(z )  = V l ( z )  with z E L. In this case, a special integral in (1.1) is used as the Cauchy principal value. 
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According to [6], the independent Etts. (1.4) and (1.5) reduce to a system of two integral equations 
that do not degenerate in the limiting case of an infinitely small hydrofoil thickness. A method of solving this 
system in the class of functions 7(s) which satisfy the Joukowski postulate was proposed in [7]. The form of 
the interface between two media can be found by the equation y = f(z), where 

, (v,i.) 
\ vtoo \ v2oo 

The pressure distribution over the hydrofoil, the total hydrodynamic forces R~ and Rv, and the 
moment M were calculated as described in [8]. 

2. Calculations were performed for a symmetric Joukowski profile. The calculation algorithm was 
tested, using the well-known solutions of the problem of an infinite liquid flow about the Joukowski profile 
and the motion of a plate under the free surface of a heavy liquid [9]. In this case, the relative calculation 
error was not more than 1%. 

The dimensionless parameters of the problem are the Froude number Fr = Vloo/v@; the ratio of the 
densities p, = p2/pl; the ratio of flow velocities v, = V2oo/Vtoo; the distance between the leading edge and 
the unperturbed interface h = H/b. 

A numerical experiment was performed to estimate the effect of these parameters on the wave resistance, 
lift, and moment relative to the leading edge moving under the interface between two heavy liquids. The main 
results are shown in Figs. 2-6. 

Figure 2 shows the standard coefficients Cz, C v, and Cm versus the Froude number for the relative 
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thickness c = 0, 0.I, and 0.2 (curves 1-3) with a = 5 ~ h = 1, and p. = 0. Near Fr = 1 a substantial increase in 
the wave resistance, lift, and moment is observed with increase in the hydrofoil thickness at a fixed distance h. 
A similar effect occurs with decreasing distance between the hydrofoil and the interface for a fixed thickness c 
(Fig. 3, where c = 0.1, ~ = 5 ~ and p. = 0; curves 1-3 correspond to h = 0.5, 0.75, and 1). It is interestin~ 
to compare the curves of Cz, Cy, and Cm versus the Froude number at p, = 0 (a free surface) and p. = 0.97 
(the salt-sweet water interface). The calculation results for c = 0.1, c~ = 5 ~ h = 1, and v, = 1 are shown in 
Fig. 4 (curves l and 2 correspond to p. = 0 and 0.97). The effect of the ratio of the flow velocities on the 
dependences of Cx, Cy, and Cm on Fr for c = 0.1, c~ = 5 ~ h = l, p. = 0.97; and v. = 1.0, 0.5, and 0 (curves 
1-3) is schematically depicted in Fig. 5. 

The influence of the Froude number on the interface shape is illustrated in Fig. 6 for a free surface: 
Fr = 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, and 1.2 (curves 1-8) for c = 0, 0.1, and 0.2; c~ = 5o; h - 1. 

The numerical results allow us to draw the following conclusions on the effect of the problem parameters 
on the wave resistance and hydrofoil lift. The main characteristic is the dependence of C,,  Cy, and Cm on 
the Froude number. The influence of the other parameters is most significant for Fr -.~ 1 and Fr < 1. In this 
case, an increase in the relative hydrofoil thickness has the same effect as the approach of the hydrofoil to the 
interface. An increase in the ratio of densities p, from 0 to 1 leads to both a decrease in the wave resistance for 
all Fr values and the shift of maxCz to the left, whereas the dependence of the lift and moment on the Froude 
number at different p. appears to be more complex. The dependence of Cz, Cy, and Cm on the parameter v, 
is noticeable only for Fr < 0.5. 

This work was supported by the Russian Foundation for Fundamental Research (Grant 94-01-01049). 
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